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ABSTRACT 
In this paper we describe the basic algorithmic characteristics of the test of the hypothesis that one 
group of dependences is consistent with another group of dependences for a case when the error 
disturbances of this data have normal distribution. Unpaired and paired versions are presented. 
The aim of our work was to find effective algorithms for biomarker identification in mass (MS) or 
Raman spectra (RS). This approach has been applied to mass spectral data and measured for 
identification of kidney carcinoma biomarker. Further more, the algorithm has been applied to 
Raman spectral data with the aim of recognizing the efficiency of heat denaturation of calf thymus 
DNA. The results of the applications show the need to find new regression algorithms, for example 
in non-parametric statistics. 
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1. INTRODUCTION

Rapid development of genomic and proteomic methods have led to an enormous increase in 
experimental data. To be able to extract answers to important questions from these data, it is 
necessary to find an effective bio-statistical method for their processing. The application of advanced 
methodologies is necessary to give us more detailed structured information.  

 In the title of this paper and also in many of its paragraphs, the term dependence is used. The 
term dependence means the so-called functional dependence. Consequently, a certain value of the 
independent variable x  always corresponds to only one certain value of the dependent variable y . It 

is assumed that functional dependence is identical with the studied physical dependence, and 
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eventually biophysical dependence, whose exact mathematically analytical form is in the majority of 
cases unknown. 

 The text also deals with the so-called regression dependence. In that case, for a certain value 
of the independent variable x , there always exists a certain random distribution of the dependent 
variable y  (random quantity). An appropriate regression function is then considered as a mean value 

of regression dependence. We denote regression function with the symbol ( )x� . In this article, the 

mentioned tests of hypotheses about mutual relations of dependences are, in fact, presented as tests 
of hypotheses about mutual relations of regression functions. At the same time, it is assumed that the 
regression functions are sufficient approximations of the appropriate so-called functional (i.e. studied 
biophysical) dependences.

 Medical and biological research often deals with miscellaneous dependences. A particular 
experimental problem in which dependences are dealt with is then, in terms of the previous 

paragraph, described by the means of regression functions 1( )x�  , 2( )x� , … , ( )M x�  . 

 Apart from the above mentioned information, further in the text the so-called experimental 
dependences are also discussed. These dependences are created by the appropriate experimentally 
measured or observed data items corresponding with the independent variable x  and dependent 
variable y .

 Particularly often, however, the following problem occurs in medical and biological research. 

 It is necessary to compare the set of dependences of the type “group of sick patients” with the 
set of dependences of the type “group of healthy patients”. In that case, what is effectively being dealt 
with are experimental dependences measured, e.g., on population samples of people, experimental 
animals, micro-organisms, etc. Or it is necessary to compare the set of experimental dependences of 
the type “the given noxious substance was applied” with the set of experimental dependences of the 
type “the given noxious substance was not applied”. Subsequently, statistical data evaluation solves 
this corresponding decision-making problem. That means the test of the hypothesis that one group of 

dependences is consistent with another group of dependences is conducted (null hypothesis 0H ).

Generally, the aim of the research is to demonstrate that a given noxious substance has 

ascertainable influence, i.e., to reject the null hypothesis 0H .

 Very often the problem is specified in such a way that the first group of experimental 
dependences models the data measured on the group of sick patients, while the second group of 
experimental dependences models the data measured on the group of healthy patients. Spectral
methods represent a large class of physical methods which are based on two dimensional 
dependences. We denote the group of spectral dependences which models the data of the type 

“group of sick patients” by the regression functions sick 1( )x� , sick 2( )x� , … , 
sicksick ( )M x� , and the 

group of spectral dependences which models the data of the type “group of healthy patients” by the 

regression functions healthy 1( )x� , healhy 2( )x� , … , 
healthyhealthy ( )M x� . The quantity x  is a real 

independent variable that may represent time, effective mass in the case of MS, wave number in the 
case of RS, etc. The total number of dependences or the total number of regression functions then is 

sick healthyM M M� � .
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 In this paper, the algorithm for the testing of the hypothesis that one group of dependences is 
consistent with another group of dependences is described. There is a regression model presented in 
section 2 which serves as a basis for all tests. Section 3 deals with particular features of the testing 

algorithm. There is a general form of null hypothesis 0H  presented in subsection 3.1. In subsection 

3.2, the so-called definition matrix is established and a special form of null hypothesis 0H  about 

mutual relations of dependences is presented. In subsection 3.3, the relation for enumeration of p-

value for the test of null hypothesis 0H  is introduced for cases where the vector of error disturbances 

has a normal distribution. An integral part of the testing algorithm is a statistically optimized 
orthogonal polynomial regression of the set of all experimental dependences. In subsection 3.4,
computation of optimized degrees of polynomials in this regression is presented. In subsection 3.5,
there is a description of the test itself, which forms the main part of this paper. In subsection 3.6, the 
so-called pair variant of the test is presented, which is applied when measurement is performed on 
the same subject (man, experimental animal, micro-organism, etc.) before and after application of a 
given noxious substance. Section 4 treats some applications of the test in medical and biological 
research. Subsection 4.1 treats general features of mass (MS) and Raman (RS) spectra from the 
point of view of possible applications of the test. In subsection 4.2, the way of spectra segmentation 
preprocessing is established. In subsection 4.3 and 4.4, respectively, the concrete MS- and RS-
application of the test is introduced. 

2. STATISTICAL MODEL

We consider hereafter orthogonal polynomials 0 1 2( ), ( ), ( ), ...x x x� � �  of the independent variable 

x , where ( )x��  is a polynomial of th�  degree, 0,1,2,� � �  (Forsythe, 1957; Ralston, 1973; 

Golub and Van Loan, 1996). We further consider that sick healthyM M�  of regression functions 

sick 1( )x� , sick 2( )x� , … , 
sicksick ( )M x�  and healthy 1( )x� , healthy 2( )x� , … , 

healthyhealthy ( )M x�  are in fact 

M  regression functions 1 sick 1( ) ( )x x� �� , 2 sick 2( ) ( )x x� �� , … , 
sick sicksick( ) ( )M Mx x� �� ,

sick 1 healthy 1( ) ( )M x x� �� � ,
sick 2 healthy 2( ) ( )M x x� �� � , … , 

healthyhealthy( ) ( )M Mx x� �� . Regression 

functions 

,
0

( ) ( ) ( )
iK

i i i ix x x� �
�

� � �
�

�� �	 � � , 1,2, ,i M� � ,

are linear combinations of our orthogonal polynomials. Here ,0 ,1 ,( , , , )
ii i i i K� � �� ��  are the vectors 

of regression coefficients and 

0 1( ) ( ( ), ( ), , ( ))
ii Kx x x x� � �� ��  (1) 

are vectors of orthogonal polynomials, where 1,2, ,i M� � . The number iK  is the degree of the 

highest orthogonal polynomial used at the construction of regression function ( )i x� , 1,2, ,i M� � .

 We consider for the fixed vector 1 2( , , , )Tx x x �� �x  of the independent variable x  value 

vectors of the dependent variables ,1 ,2 ,( , , , )i i i i Ty y y �� �y , 1,2, ,i M� � , which are random 

quantities. 
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 We have ( ( 1))iT K
 � dimensional matrices 

0 1 1 1 1

0 2 1 2 2

0 1

( ) ( ) ( )
( ) ( ) ( )

, 1, 2, ,

( ) ( ) ( )

i

i

i

K

K
i

T T K T

x x x
x x x

i M

x x x

� � �
� � �

� � �

� �
 �
 �� � �
 � �
� �

�
�

�
� � � �

�

� ,

of the values of our orthogonal polynomials. 

 The statistical model for “the test of the hypothesis that one group of dependences is 
consistent with another group of dependences” is “the disturbance-related sets of regression 
equations, the case with contemporaneously correlated disturbances” (Judge et al., 1985). We can 
express this model in the form 

1 1 1 1

2 2 2 2

M M M M

� � � � � � � �
 �  �  �  �
 �  �  �  �� �
 �  �  �  �
 �  �  �  � �  �  �  �
� � � � � � � �

0 0
0 0

0 0

�
�

� � � � � � �
�

� �
� �

� �

y e
y e

y e

or alternatively in the brief form 

� ��� �y e . (2) 

Herein, the vector 1 2( , , , )M �� �y y y y  is a vector of dependent variables, the vector 

1 2( , , , )M �� �� � � �  is a vector of regression coefficients and the vector 1 2( , , , )M �� �e e e e  is a 

vector of error disturbances. The matrix �  is a block diagonal matrix with dimensions ( )MT K


with sub-matrices 1 2, ,..., M� � �  on the diagonal, whereby the dimension K  of the regression vector 

�  is the sum of dimensions of single regression vectors 1� , 2� , … , M� , i.e. 1( 1)M
i iK K�� � � .

 We suppose that the mean values of error disturbances satisfy [ ]iE � 0e  and 

( )i i ii TE �� �� �e e I  for any positive i j� , where , 1, 2, ,i i M� � � . It is assumed that variances ii� � ,

where , 1, 2, ,i i M� � � , are practically constant. From here the covariance matrix �  of the vector e
of error disturbance is given by the relation 

[ ]E �� � �� �ee I ,

where 

11 12 1

12 22 2

1 2

M

M

M M MM

� � �
� � �

� � �

� �
 �
 ��
 �
 � �
� �

�
�

� � � �
�

� .

 Estimation retrieval of the estimate of the regression coefficient vector �  proceeds in two 

stages. First, the estimation �̂  regression coefficient vector is found. It is assumed that the system of 

normal equations  
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1 1ˆ� �� ��� � � � � � y

has a regular solution (Forsythe, 1957; Ralston, 1973; Golub and Van Loan, 1996), where we put 

�� I  in the first stage of the solution totaling two stages. 

 Elements of the estimate ( )
ˆ
M M
�  of the matrix of mixed variances are then calculated with 

the help of the relations 

1 ˆ ˆˆii i iT� �
� ��� e e , , 1, 2, ,i i M� � � ,

where LS-residuals ˆˆi i i i� ��� �e y  and where 1,2, , ,i M� �  are sub-vectors of the estimates of 

error disturbances. 

 The resulting estimate 
ˆ̂�  is an EGLS-estimate of the regression coefficients’ vector (Judge et 

al., 1985). It is arrived at by solution of the system of normal equations 

1 1ˆ̂ˆ ˆ� �� ��� � � � � � y ,    where    1 1ˆ ˆ� �� �� � I ,

for which a regular solution is also supposed (Forsythe, 1957; Ralston, 1973; Golub and Van Loan, 
1996). 

 This regression model has proven useful in the past at solving related problems of proteomics 
(Knizek et al., 2004b; Knizek, 2004a; Knizek, 2007a-c; Knizek, 2008). 

3. HYPOTHESES TESTING

3.1 GENERAL FORM OF NULL HYPOTHESIS

Within the regression model (2), we can carry out the test of the null hypothesis

0 :

( ) ( 1) ( 1)

H

J K K J

�
�
�
�
 
 
 �

� �c r
 (3) 

for J  linear relations among regression coefficients from the vector � . An alternative hypothesis is 

the double-sided alternative, which, from J  relations in (3) at least one, is not valid. The form of the 
c  matrix of constants and the form of the r  vector of constants in the relation (3) concretize the null 

hypothesis 0H . The rows of the matrix c  have to be linearly independent. 

3.2 The definition matrix and the null hypothesis about mutual relations of dependences 

Hereafter, both the matrix c  and the vector r  depend on an abscissa x . That is why we replace the 

symbol c  in relation (3) by the symbol ( )xc  and the symbol r  with the symbol ( )xr .

 We will test mutual linear relations among our regression functions. These relations will have 
the form 
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,
1

( )
M

j i i
i
k x�

�
	 , 1,2, ,j J� � ,

where the coefficients ,j ik , 1,2, ,j J� � , 1,2, ,i M� �  are real numbers. We summarize the 

coefficients from our linear relations into the matrix 

1,1 1, 2 1,

2,1 2, 2 2,

,1 , 2 ,

M

M

J J J M

k k k
k k k

k k k

� �
 �
 ��  �
 � �
� �

�
�

� � � �
�

k ,

which we denominate the definition matrix. We summarize the values of regression functions into the 
vector 

1 2( ) ( ( ), ( ), , ( )) 'Mx x x x� � ��� � .

The null hypothesis about linear relations among our regression functions then has the form 

0 : ( ) ( )H x x��k r . (4) 

We demonstrate that it is a special case of the null hypothesis (3). We summarize the vectors 

( )i x�  from (1), 1,2, ,i M� � , into the block matrix 

1

2
( )

( )
( )

( )

( )

M K

M

x
x

x

x




� �
 �
 ��
 �
 � �
� �

0 0
0 0

0 0

�
�

� � � �
�

�
�

�

X .

The equation ( ) ( ( ))x x� � �k k X  holds. If we then put in (3) that ( ) ( )x x�c k X , (3) assumes 

the form of (4). 

 Let’s note that the rows of the matrix ( )xc must be linearly independent and, consequently, 

also the rows of matrix k  must be linearly independent. 

3.3 p-Value 

We calculate the p-value for the test of the hypothesis 0 : ( ) ( )H x x� �c r , provided that the 

vector e  of error disturbances has normal distribution, by means of the relation 

,
ˆ( ) 1 ( )J MT Kp x F ��� � . (5) 

In relation (5), ,
ˆ( )J MT KF ��  is the distribution function of F-distribution with J  and MT K�

degrees of freedom and test characteristic 
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1

1
( ) ( )

ˆ ˆˆ ˆˆ( ( ) ( ) ) ( ( ) ( )) ( ( ) ( ) )ˆ
ˆ ˆˆ ˆˆ( ) ( ) ( ) ( )M M T T

x x x x x x J

MT K
�

�

�

 


� �� �
�

�� � � �

� �

�� � ��

r c c Bc r c

y I y
,

where 1 1
( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ( ( ) )K K K MT M M T T MT K
� �


 
 
 
 
�� � �� � �B B I  (Judge et al., 1985). 

3.4 Statistically optimized orthogonal polynomial regression of the experimental 
dependences group 

Before we begin to test the miscellaneous mutual linear relations among regression functions, it is 

necessary to determine the optimum values 1 2, , , MK K K�  of the degrees of orthogonal 

polynomials. A strategy is chosen for this process when the degree values of orthogonal polynomials 

are always identical, i.e., 1 2 MK K K� � �� . We establish the artificial variable K  for preservation 

of their values. 

 Estimations of the orthogonal polynomials degrees are determined with the help of a series of 
null hypothesis tests (3). The process is as follows. 

 First, the maximum possible degrees of orthogonal polynomials are selected. It was 
empirically ascertained that degrees higher than 15 have no practical meaning. Therefore, we initially 

choose min( 2 , 15)T� �K .

 (*) We put 1 2 MK K K� � � �� K . Then we test the null hypothesis 0H , that all 

regression coefficients 
11,K� ,

22,K� , … , , MM K�  in orthogonal polynomials of the highest degrees 

are zero, against the two-sided alternative that it is not so in at least one of the M  cases. The matrix 
c  includes zero elements here. The only exceptions are the elements 

,
1

( )
i i

T

i K t
t

c x� �
�

�	 ,     
1

(1 )
i

i l
l

K�
�

� �	 ,     1,2, ,i M� � .

The vector of constants � 0r .

 If the null hypothesis 0H  is rejected, the resulting estimations 1 2
ˆ ˆ ˆ, , , MK K K�  of the 

orthogonal polynomials degrees are equal to K . If the null hypothesis is not rejected, we decrease 

the value of K  by one. If 0�K , we put 1 2
ˆ ˆ ˆ 0MK K K� � � �� . If 0�K , we come back to the 

clause (*) and repeat the process from this clause on. 

 Very good efficiency of this procedure of searching for estimation of the degrees of regression 
orthogonal polynomials was verified using simulated data. See graphic demonstration Figure 1. 
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polynomial degree = 7, alpha = 0.05, error = 6 %, K(max) = 15

Figure 1 Demonstration of effectiveness of the process of searching for estimations of regression 
orthogonal polynomials on simulated data. Dashed line - simulated courses of 
functional dependences; crosses – randomized courses of functional dependences;
solid line - statistical estimations of courses of functional dependence based on 
randomized courses of functional dependences.

3.5 Testing the hypothesis that one group of dependences is consistent with another 
group of dependences 

As it was noted previously in the introduction, in medical and biological research the following problem 
often occurs. It is necessary to compare the set of experimental (e.g. spectral) dependences of the 
type ”group of sick patients” with the set of experimental dependences of the type “group of healthy 
patients”. What is being dealt with in these cases is, as a rule, experiments measured, for example, 
on population samples of people, experimental animals, micro-organisms, etc. In some cases it is 
necessary to compare the set of experimental dependences of the type “the given noxious substance 
was applied” with the set of experimental dependences of the type “the given noxious substance was 
not applied”.

 Our effort is to test the null hypothesis that, in the point x , every regression function 

sick 1( )x� , sick 2 ( )x� , … , 
sicksick ( )M x�  is equal to every regression function healthy 1( )x� , healthy 2 ( )x� ,

… , 
healthyhealthy ( )M x� , thus 

0 sick healthy: ( ) ( )i iH x x� � �� , sick1, 2, ,i M� � , healthy1, 2, ,i M� � � . (6) 

Matrix ( )xc , corresponding to (6), has sick healthyM M�  rows, which are linearly dependent. Thus, 

it contains at the most sick healthy( 1)M M� �  linearly independent rows. Therefore, it is necessary to 

substitute (6) using a lesser number of equations. This can be done in various ways. For example, the 
following form of the null hypothesis has proven well: 
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sick

healthy

sick 1 sick 2 sick

0 sick healthy

healthy 1 healthy 2 healthy

( ) ( ) ( ),
: ( ) ( ),

( ) ( ) ( ),

M

M

x x x
H x x

x x x

� � �
� �
� � �

� � � �
�

� 
� � � �!

�

�
 (7) 

containing sick healthy( 1)M M� �  equations. Here, the means are sick-1
sick sick 1 sick( ) ( )M

i ix M x� ��� �  and 

healthy-1
healthy healthy 1 healthy( ) ( )M

i ix M x� �� ��� � . The corresponding definition matrix has the form 

sick

-1 -1 -1 -1 -1 -1 -1
sick sick sick sick sick healthy healthy he

healthy

1 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0( -1) - times

0 0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0

( -1) - times

M

M M M M M M M M

M

�
�
�
�
��
 
�
�
�
�
�!

�
�
�
�
��
 
�
�
�
�
�!

�

�
�

�
�

� � �

� �
� �
� �

� � � � � � � � � � � �
� �
� �
�

k
-1 -1 -1

althy healthy healthy

sick healthytimes - times

0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 1

M M

M M

�

� �
�

�

�
���������������� ����������������������������������������������������

�
� �
� �
� �

� � � � � � � � � � � �
� �
� �

� �
 �
 �
 �
 �
 �
 �
 �
 �
 �
 �
 �
 �
 �
 �
 �
 �
 �
 �
 �
 �
 �
 �
 �
 �
 �
 � �
� � �

���������������������������������������������������

.

 A very high efficiency of the procedure for testing of the null hypothesis (7) has been verified 
on simulated data. See graphic demonstration in figure 2a and 2b. In the graphic demonstration in 

figure 2b, p-values ( )p x  of tests of hypotheses that one group of dependences is consistent with 

another group of dependences are displayed. As many as 1000 equidistant abscissas were selected. 

The test has been performed in each of them; see figure 2a. The calculated p-values ( )p x  form in 

Figure 2b the graph of dependence on the independent variable x .

1 2 3 4 5 6

-5

0

5

10

15

polynomial degree = 15, alpha = 0.05, error = 6 %, K(max) = 15
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polynomial degree = 15, alpha = 0.05, error = 6 %, K(max) = 15

Figure 2a (upper) and 2b (lower) Demonstration of efficiency of the test of the hypothesis that one 
(red) group of dependences is consistent with another (blue) group of dependences. Upper 
graph: two simulated groups (red and blue) of stochastic functional dependences. Dashed 
line - simulated courses of functional dependences; crosses – randomized courses of 
functional dependences; solid line - statistical estimation of courses of functional
dependences based on randomized courses of functional dependences. Lower graph:
Corresponding dependence of p-value ( )p x  on the appropriate independent variable x .

It can be seen from figures 2a and 2b that the efficiency of the test of the hypothesis that one (red) 
group of dependences is consistent with another (blue) group of dependences is very much exceeds 

expectations. Where simulated courses cross each other, the p-value ( )p x  sharply increases and 

immediately decreases again. There, the null hypothesis 0 : ( ) ( )H x x� �k r is not rejected and the

difference between  the two groups of regression function is not statistically confirmed. On the 

contrary, in those intervals of the independent variable x  where ( )p x "# , the null hypothesis is 

rejected, and as a result a statistically justified suspicion exists that from J  equations ( ) ( )x x� �k r

of the null hypothesis 0H  at least one is not valid.

 The algorithm also works very well in the case where only 1 red and 1 blue experimental 
functional dependence disturbed by normally distributed randomization were simulated. See figures 
3a and 3b. 
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polynomial degree = 8, alpha = 0.05, error = 10 %, K(max) = 15

1 2 3 4 5 6
0
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polynomial degree = 8, alpha = 0.05, error = 10 %, K(max) = 15

Figure 3a (up) and 3b (down) Demonstrating the efficiency of the test of the hypothesis that one 
one-member group of dependences is consistent with another one-member group of 
dependences. Upper graph: simulated two one-member groups (red and blue) of stochastic 
functional dependences. Dashed line - simulated courses of functional dependences;
crosses - randomized courses of functional dependences; solid line - statistical estimations 
of courses of functional dependences based on randomized courses of functional 
dependences. Lower graph: Corresponding dependence of p-value ( )p x on the 
appropriate independent variable x .
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3.6 The paired version of the test of the hypothesis that one group of dependences is 
consistent with another group of dependences 

The paired version of the test is applied in the case where we have two equally large groups of 

regression functions, each with sick healthyM M�  members. We compare the pairs sick ( )i x�  and 

healthy ( )i x�  of regression functions, sick1, 2, ,i M� � . An example of this is the measurements 

carried out on the same patient before and after application of a medicine. Expressed more generally, 
it is measurement carried out on the same subject (human being, experimental animal, micro-
organism, etc.) before and after application of a given noxious substance. 

 The task is to test the null hypothesis 

sick healthy

sick 1 healthy 1

sick 2 healthy 2
0

sick healthy
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which consists of sick healthyM M�  equations. The corresponding definition matrix has the form 

sick - times

- times

1 0 0 1 0 0
0 1 0 0 1 0

0 0 1 0 0 1
M

M

� �
 ��
 ��

� �  �� �� �! �
� �

�
��

����������������������������������

� �
� �

� � � � � � � �
� �

k ,

where sick2M M� . Vector ( )x � 0r .

4    Results of applications on real data 

This section discusses details of some possible applications of the test in medical and biological 
research. 

4.1    Identification of biomarker areas in mass (MS) and Raman spectra (RS) 

In this subsection, physical properties of mass and Raman spectra from the point of view of 
possible uses of the above described test are handled. At the same time, emphasis is placed on 
physical characteristics of mass and Raman spectra of biomarkers with regard to their possible 
identification.

 We define a biomarker as a biochemical substance (often a protein) or its property (often a 
conformation or a post-translational modification) amount of which changes with intensity or degree of 
a studied biological process, e.g. disease. The possibility (potential) of biomarker identification using 
MS and/or RS assumes that changes in MS- and/or RS-peak size and shape are corresponding to 
changes in biomarker quantity. If, proportionally to the quantity, the size of the given biomarker MS-
peak and/or RS-peak decreases or increases with progressive biological process, what is being dealt 
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with is the (our terminology) decreasing or increasing, respectively, biomarker. The x-coordinate, i.e., 
the effective mass and/or wave number of the MS-peak’s and/or RS-peak’s maximum, is a
characteristic constant of the appropriate biomarker.

 It is very important to understand the way mass and Raman spectra are measured and 
physically created in order to properly use the test. It is necessary to realize that the resulting MS 
and/or RS spectrum (e.g. of proteins from a tumor tissue) is a superposition of hundreds to thousands 
of spectra of particular biochemical substances (proteins, DNA and the like). It is assumed that only a 
small part of biochemical substances, approx. 5% of them, represent biomarkers. 

 By the so-called biomarker area, it is necessary to understand a section of the spectrum, in 
which one or more biomarkers express themselves in the same way, i.e., one or more biomarkers are 
increasing or one or more biomarkers are decreasing. At the same time however, this biomarker, or a 
group of them, may be “contaminated” by tens or hundreds of non-biomarkers or biomarkers having a 
contrary effect. For example  in spectrum terminology, one biomarker MS-peak (and/or RS-peak), or a 
group of them, can be distorted by tens or hundreds of neighboring non-biomarker MS-peaks (and/or 
RS-peaks) or biomarker MS-peaks (and/or RS-peaks) that have a contrary effect. 

 The relatively simplest is the mass spectrum SELDI TOF. One biochemical substance is 
represented here by one peak. In the case of mass spectrum MALDI TOF, one substance is 
represented by a group of about 8 peaks due to isotopic distributive splitting. Now, let us imagine that 
the resulting mass spectrum is a superposition of 500 to 3500 spectra of single substances defined in 
this way. Biomarkers increasing or decreasing present approximately 5% of these substances. It is 
clear that, with a very high probability, individual peaks mutually overlap each other with varying 
intensity. In other words, mass spectrum of a real sample is a very complicated formation. 

 RS is relatively the most complicated, as one substance is represented by approx. 60 peaks. 
The interpretation here is complicated (Schrader and Bougeard, 1995; Smith and Dent, 2004) 
because the size and position (of single signals) reflect not only the chemical composition of the 
studied molecule but also its secondary structure from the viewpoint of the stereochemistry and the 
interaction with other components in a sample (Benevides and Overman, 2005). Therefore, when 
processing Raman spectra, it is necessary to include in the analysis not only the change in signal 
heights at a given wave number but also the possibility of coincident changes in the peak width and 
position. It is possible to observe --- from the whole number of 3 6N �  vibrations of N-atomic 
molecule --- only those vibrations which are permitted by selection principles. In the case of 
biopolymers, for example DNA, molecule structure contributes to a decrease in the number of signals. 
A biopolymer is formed by linkage of only four kinds of nucleotides. The reason is that most 
measurable signals in RS are sensitive to the state of a group of a few atoms within the nucleotide. It 
is then possible to distinguish approximately 60 signals (peaks) in the Raman spectrum of DNA, but 
only some of them are characteristic of the given kind of nucleotides. Any change in the state of the 
molecule, from chemical disintegration to bending, changes the spectrum of the molecule at a number 
of places at once. RS of proteins, i.e., of tumor tissue, also gives a true picture of the stereo-chemical 
configuration of the substance. RS of a sample reflects not only its chemical composition, but also the 
physical chemical state of single components and the interaction among them. Thus there are 
temporary chemical aggregates which exist only on the basis of complex hydrogen structures and van 
der Waalse forces, etc. In RS, it is also necessary to view optical antipodes, both left-handed and 
right-handed, i.e., stereo-chemical configuration isomers, as different matters. 
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 It follows from the given discourse on the principles of mass and Raman spectrum generation 
that by means of the proposed algorithm consisting in testing the hypothesis that one group of 
dependences is identical to another group of dependences, a biomarker area can be identified on the 
independent variable x  axis rather than a biomarker as such. The reason is that the possible mutual 
statistical distinctness of groups of dependences corresponding first to sick patients and then to 
healthy patients is, with high probability, caused not by one sole biomarker but by a group of 
biomarkers instead. 

4.2    Segmentation of mass and Raman spectra 

Mass or Raman spectrum is a very extensive formation. Approximately 50 thousand points are 
scanned for graphic illustration and description of the mass or Raman spectrum. In practice, mass or 
Raman spectrum is conventionally displayed in such a format that the height-width ratio of the graphic 
picture approximately equals A4 format size. This way of displaying the mass spectrum often leads to 
the spectrum being displayed as a highly vibrating dependence with a number of very narrow peaks. 
The statistical procedures used (Tibshirani et al., 2004; Wu et al., 2003) are conceived in the 
corresponding sense. 

 For the approach based on the regression model (2), it is necessary to process a spectrum 
step by step, segment after segment, according to the possible effective masses or wave numbers. In 
practice, the segmentation into 35 to 2000 segments has proven; the number of their effective 
masses or wave numbers oscillates between 50 and 300. One of these segments is fixed. It is 

assumed that just the T  effective masses or wave numbers, denoted 1 2, Tx x x� , fell within the 

segment set that we set. 

4.3    Results of applications in an attempt to identify biomarker areas in mass spectrum 

A large set of mass spectral data, measured with the aim of identifying kidney carcinoma 
biomarkers, was subjected to the above described test of the hypothesis that one group of 
dependences is identical to another group of dependences. This set of mass spectral data is 
represented partly by the set of dependences of the type “sick”, i.e., of kidney carcinoma, and partly 
by the set of dependences of the type “healthy”, i.e., patients without kidney carcinoma. The algorithm 

of the test “identified,” with the help of the p-value ( )p x , the presence of biomarker areas across 

practically the whole spectral span, i.e., in all equidistant abscissas in all segments. The null 
hypothesis that one group of dependences is identical to another group of dependences was rejected 
for the whole spectral span. Such a result does not correspond with reality and shows that the 
algorithm used is not appropriate for the given spectral data. 

4.4    Results from applications in determining the efficiency of heat denaturation of calf 
thymus DNA with the help of Raman spectra 

The test hypothesis that one group of dependences is identical to another group of dependences
has been applied to data demonstrating the efficiency of heat denaturation of calf thymus DNA with 
the help of Raman spectra. (See Figure 4a and 4b). The null hypothesis that one group of 
dependences is identical to another group of dependences was, with the exception of the intersection 
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points, rejected for the whole span. This shows that it was statistically proved that by warming to 95°C 
effective denaturation of calf thymus DNA will take place. 

Figure 4a (upper) and 4b (lower) Demonstration of the efficiency of heat denaturation of calf thymus 
DNA with the help of RS: Upper graph: RS of 95°C denatured calf thymus DNA (red) and 
RS of 20°C native calf thymus DNA (blue). Crosses - measured spectral courses; solid line 
- statistical estimation courses. Lower graph: Corresponding dependence of p-values ( )p x
on the independent variable x . As we can see, the corresponding p-value is nonzero only 
in those coordinates where red and blue courses intersect each other. 

4. Discussion and conclusions 

There is no doubt at present that computerized technologies in medicine and biological research, 
e.g. proteomics and genomics, need new approaches. This paper deals with “the test of the 
hypothesis that one group of dependences is identical to another group of dependences” when data 
error disturbances have normal distribution. 

 Testing on simulated data has shown that in the event of fulfilment of stochastic presumptions 
about error uncertainties of the data, the algorithm of the test works very well. (See Figure 1-3). 

 Results of applications in an attempt to identify the biomarker area in mass spectra have
shown that the „the test of the hypothesis that one group of dependences is identical to another group 
of dependences„ is not fit for the given data from practice, i.e. a large set of mass spectral data 
measured with the aim of identifying carcinoma kidneys biomarker. The main reasons for this are: 
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$ error disturbances of the data do not have normal distribution, 

$ biomarker behavior of the spectra has excessive character. 

This finding is key to determining the direction of further bio-information science research in these 
issues. It is necessary to derive adequate relations within intentions of robust statistics (M-estimates,
L-estimates, R-estimates) (Huber, 1981) and mathematical gnostics (Kovanic, 1986). R-estimates 
especially are procedures that are not directly based on concrete values, but on their orders. Hence, 
the request that the vector of error disturbances should have normal distribution is not valid here. 

 Mathematically gnostical processing does not work with a priori assumption about stochastic 
distribution of the error data uncertainties. An inherent feature of this method is, among others, the 
fact that it automatically searches for and finds clusters that cause excessive behaviour. 
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